Integer Factorization and Computing Discrete Logarithms in Maple

نویسندگان

  • Aaron Bradford
  • Michael Monagan
  • Colin Percival
چکیده

As part of our MITACS research project at Simon Fraser University, we have investigated algorithms for integer factorization and computing discrete logarithms. We have implemented a quadratic sieve algorithm for integer factorization in Maple to replace Maple’s implementation of the MorrisonBrillhart continued fraction algorithm which was done by Gaston Gonnet in the early 1980’s. We have also implemented an indexed calculus algorithm for discrete logarithms in GF(q) to replace Maple’s implementation of Shanks’ baby-step giant-step algorithm, also done by Gaston Gonnet in the early 1980’s. In this paper we describe the algorithms and our optimizations made to them. We give some details of our Maple implementations and present some initial timings. Since Maple is an interpreted language, see [7], there is room for improvement of both implementations by coding critical parts of the algorithms in C. For example, one of the bottle-necks of the indexed calculus algorithm is finding and integers which are B-smooth. Let B be a set of primes. A positive integer y is said to be B-smooth if its prime divisors are all in B. Typically B might be the first 200 primes and y might be a 50 bit integer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algorithmes pour la factorisation d'entiers et le calcul de logarithme discret. (Algorithms for integer factorization and discrete logarithms computation)

In this thesis, we study the problems of integer factorization and discrete logarithm com-putation in finite fields. First, we study the ECM algorithm for integer factorization and presenta method to analyze the elliptic curves used in this algorithm by studying the Galois propertiesof division polynomials.Then, we present in detail the NFS algorithm for integer factorization an...

متن کامل

Quantum factoring, discrete logarithms, and the hidden subgroup problem

Amongst the most remarkable successes of quantum computation are Shor’s efficient quantum algorithms for the computational tasks of integer factorisation and the evaluation of discrete logarithms. In this article we review the essential ingredients of these algorithms and draw out the unifying generalization of the so-called abelian hidden subgroup problem. This involves an unexpectedly harmoni...

متن کامل

Quantum algorithms for computing short discrete logarithms and factoring RSA integers

In this paper we generalize the quantum algorithm for computing short discrete logarithms previously introduced by Eker̊a [2] so as to allow for various tradeoffs between the number of times that the algorithm need be executed on the one hand, and the complexity of the algorithm and the requirements it imposes on the quantum computer on the other hand. Furthermore, we describe applications of al...

متن کامل

Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer

A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time by at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. This paper considers factoring integers and finding discrete logarithms, two problems which are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006